Digital Archives Initiative
Memorial University - Electronic Theses and Dissertations 5
menu off  add document to favorites : add page to favorites : reference url back to results : previous : next
 
 Search this object:
  
 0 hit(s) :: previous hit : next hit
  View:    
  previous page : next page
Document Description
TitleElastic properties of porous silicon superlattices
AuthorPolomska, Anna Maria, 1980-
DescriptionThesis (Ph.D.)--Memorial University of Newfoundland, 2010. Physics and Physical Oceanography
Date2010
Paginationxvii, 155 leaves : ill.
SubjectBrillouin scattering; Porous silicon--Elastic properties; Superlattices as materials--Elastic properties
DegreePh.D.
Degree GrantorMemorial University of Newfoundland. Dept. of Physics and Physical Oceanography
DisciplinePhysics and Physical Oceanography
LanguageEng
NotesBibliography: leaves 139-155.
AbstractThe elastic properties of porous silicon single layers and superlattices were determined by means of Brillouin light scattering. The quality of the Brillouin spectra dependent on the porosity of the porous layer and significant improvement was observed with the increase of porosity. The morphology and thicknesses of the porous silicon films were studied using scanning electron microscope. The porosity of both single and multilayered films was calculated using gravimetric method. -- The elastic constants of p-Si superlattices composed of layers of various porosity were compared to values of effective elastic constants obtained from the model proposed by Grimsditch and Nizzoli [M. Grimsditch and F. Nizzoli, Phys. Rev. B, 33, 8, 5891, 1986] which was reported to be applicable for other types of semiconducting superlattices. As the model requires the elastic constants of the constituent layers of the superlattice as input, the set of elastic constants was determined for each single porous silicon layer assuming cubic symmetry. -- The bulk phonon velocities and respective elastic constants of single layers and superlattices decreased with increasing average porosity of the film. The effective elastic constants of the superlattices were calculated directly from the spectra collected at smallest incident angle as well as obtained through the fitting of data with expressions for angular dependence of the velocities of the bulk phonons. The fitting was done with and without constraints on the values of elastic constants (c₁₁ > c₃₃). The longitudinal and transverse elastic constants of the superlattice (c₃₃ and c₄₄) showed excellent agreement with the model for all the approaches, while the values of c₁₁ and c₁₃ agreed only when the constraints were imposed. -- Based on the results only partial agreement with a model may be concluded. An excellent agreement for two elastic constants for all superlattices may either mean the other two cannot be determined due to uncertainties involved in the experiments or that the model needs corrections in order to work for superlattices created by electrochemical etching of a crystalline parent wafer.
TypeText
Resource TypeElectronic thesis or dissertation
FormatImage/jpeg; Application/pdf
SourcePaper copy kept in the Centre for Newfoundland Studies, Memorial University Libraries
Local Identifiera3315360
RightsThe author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.
CollectionElectronic Theses and Dissertations
Scanning StatusCompleted
PDF File(11.22 MB) -- http://collections.mun.ca/PDFs/theses/Polomska_AnnaMaria.pdf
CONTENTdm file name6916.cpd